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ON THE EXPECTED OUTPUT ANALYSIS OF TWO-
STAGE TRANSFER-LINE PRODUCTION SYSTEMS
SUBJECT TO INSPECTIONS AND REWORK!

M. N. GOPOLAN - S. KANNAN
Indian Institute of Technology, Bombay

This paper deals with the transient analysis of two-stage transfer-line pro-
duction systems subject to an initial storage of unlimited capacity and inter-
stage, end-stage inspections. It provides an integrated framework to consider
manufacturing, inspection and rework activities simultaneously. Rework of
a defective item produced by a machine is done on the same machine it-
self. Explicit expressions for some of the system characteristics have been
obtained using the state-space method and regeneration point technique. All
the random variables involved in the analysis are assumed to be arbitrarily
distributed (i.e., general).

Introduction

Consider the following problem in a two-stage transfer-line production sys-
tem. Products coming out of machine I are inspected at an inspection point
before it is being transferred to machine 11 for further processing. While the
good ones are transferred to machine II, the products that are not confirm-
ing to specifications are further classified as products that are reworkable and
otherwise. In the latter case the product is scrapped. A similar strategy is
adopted for the products coming out of machine II.

The main reason to study productive systems is that every enterprise,
private or public, manufacturing or service, involves a productive system.
There is an operation function in all enterprises. In manufacturing, the pro-
ductive system is of great importance within the enterprise as a whole. In
Inany service organizations, the produtive system and the product offered are
so completely bound up together that they are indistinguishable. While the
‘production line’ plays an important role in our life, very little research on
the interactions between the stages in a line is reported [1].

The focus of analysis of this paper is discrete part manufacturing systems,
where each item processed is distinct. Such systems are normal in mechanical,

1Beérkezett 1994. szeptember 12,
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electrical and electronics industries making products such as cars, refrigera-
tors, electric generators, or computers. The analysis of production systems,
though not given importance to the extent it deserves, is one of the oldest
problems in industrial engineering [2].

Variation in the production rate of the stations may be due to external
causes such as power supply failures, material shortages, strikes, or perhaps
the way incoming orders arrive and production plans are prepared [3].

The efficiency of a transfer line with no inventory banks can be substan-
tially less than that of the efficiency of the individual stages. Inventory banks
provide a means of improving the line efficiency so that it becomes closer to
the efficiency of the worst stage, that is, the stage with the lowest throughput
if it were operated on its own.

Systems without internal storages are frequently encountered in industry.
In that case, since there is no buffer in between machines, the behaviour of
each machine is highly dependent on one another due to the effect of blocking.
Two types of behaviour are encountered in such lines: synchronous behaviour
and asynchronous behaviour. In the case of asynchronous behaviour, parts
can move independently of each other, whereas in the case of synchronous
behaviour, transfer of parts from one machine to the next one occur simul-
taneously. This may be the case, for instance, when a rigid parts transfer
system is used. It should however be noticed that in the case of two-machine
transfer lines, it is easy to show that the production rate obtained using
asynchronous transfer is greater than that corresponding to a synchronous
transfer.

Thus, the production rate of a transfer line with synchronous behaviour
provides a lower bound on the production rate of the same line with asyn-
chronous behaviour.

The basic causes of problems in production lines are different production
rates, variability of the service times due to randomness, and station break-
downs. Losses in line efficiency are evidenced in periods where a station is
blocked or starved. A station is blocked if the service of the item in this
station is completed and service in the next station is still going on so that it
is not possible for the item to enter the next station. In this case, the station
remains idle until the service in the next station is completed. A station is
starved if there are no items either in the buffer or in service.

The analysis of the two-stage systems provides useful hints to describe
generalised (i.e., n-stage) systems and such an analysis is getting a great deal
of attention over the last few years. This is because of the reason that any
multistage system can be analysed by formulating the system as a two-stage
system [4].

Several authors [5,. ..,16] have analysed production systems to find various
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measures of system performance. But, in all their works, inspection has not
been taken into account or rejected items were scrapped. But, this may not
be feasible always. This is particularly so when the cost of an item is high.
In fact, as it has been pointed out by Gupta and Chakraborty [17], rework is
becoming inevitable in many production systems. Not much work has been
reported on rework. Some authors have suggested the rework of rejected
items, but their analysis is confined to deterministic models [18]. Others
have considered only Markovian approach. Also, most of the work in the
literature are mainly concentrated on the analysis of steady-state behaviour
of the system which may not be useful in reality, as most of the systems-will
breakdown or collapse before reaching steady-state. Some authors [19,20,21]
have analysed the transient behaviour of the system without taking into
account the concept of rework, and the models are too specific as they deal
with Markovian distributions only.

The present paper deals with the transient analysis of a family of two-stage
production systems (since, the processing times at both the stages including
rework are assumed to be arbitrarily distributed) subject to an initial buffer
of unlimited capacity, inter-stage, end-stage inspections. The processing time
of each type of rework is governed by a different distribution. The analysis
is carried out by modelling the production system as a queueing system.

Production system under study is modelled using regeneration point tech-
nique. For details of this approach, we refer for Uematsu et al [22], Birolini
[23]. Integral equations have been written for various state probabilities by
identifying the system at suitable regeneration epochs [24]. These equations,
which are of convolution type, have been solved by successive approximation
[25] .

The following system characteristics have been obtained under the as-
sumption that the distributions of all the random variables involved in the
analysis are arbitrary.

1. Expected number of jobs completed by machine I in [0,1].

2. Expected number of jobs completed by machine II in [0,t].

3. Expected number of visits of the systemn to blocked state in [0,1].

4. Expected number of reworked jobs completed by machine I in [0, ¢].
5. Expected number of reworked jobs completed by machine II in [0,].

6. Expected number of visits of the system to rework state (i.e,, to a state
in which either machine I or machine II is busy with rework) in [0,].
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The presentation of contents of this paper is organised as follows. Section
2 gives a list of assumptions we made, section 3 gives notations used, while
sections 4 and 5 deal with system modelling and evaluation of system char-
acteristics respectively. Numerical illustrations are given for some particular
cases in section 6. Section 7 is devoted to conclusion.

2. Assumptions

1.

10.

Initial buffer is of unlimited capacity and hence machine I is never
starved.

. Transfer of units from the initial buffer to machine I and from machine

I to machine II are instantaneous.

. Inspections at both the inter-stage and end-stage are of instantaneous

type.

. Whenever a product is to be reworked, then the respective machine will

immediately start reworking the defective product.

. Processing times at both the stages are independent, random and ar-

bitrarily distributed (including processing times of rework).

Products from machine I will be inspected ony when machine I1 is free.
(This is to avoid indefinite blocking.)

. Stage II (i.e., machine II) is never blocked.

. Reworked jobs are always perfect.

Machine I/11 is perfect (i.e., reliable).

Setup is instantaneous.
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3. Notations

pdf

cdf

sf
f10:)/r2()
F1(:)/F2(;)

Pg1/Py2
prl/pr?

psl/psZ

probability density function

cumulative distribution fucntion

survivor function

pdf of processing time of machine I/machine II
cdf of processing time of machine I/11

sf of processing time of machine 1/11

pdf of processing time of rework in machine I/1I
cdf of processing time of rework in machine I/I1
sf of processing time of rework in machine I/11
probability of a job completed by machine 1/II is good
probability of a job completed by machine I/11

is not good but reworkable

probability of a job completed by machine /11

is neither good nor reworkable and hence a scrap.

convolution: f(t) * g(t) = fot f(u)g(t — w)du

4. System modelling

The system under consideration is modelled by identifying the state of the
system at any instant t. The possible states of the system are givenin Table 1.
Figure I tepresents the schematic diagram of the production system. All the
one-step transitions are searched between states 1 and 6 and are depicted in

Frgure 2.

Table 1: Slate space

State Machine T Machine II
1 Busy Free
2 Busy with rework Free
3 Busy Busy
4 Busy Busy with rework
5 Blocked Busy
6 Blocked Busy with rework
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5. Evaluation of system characteristics

In this Section, expressions for the various measures of system characteristics
have been obtained.

5.1 Expected number of jobs completed by machine I in [0, t]

The expression for the expected number of jobs completed by machine I in
[0,1] is obtained as follows.

Let M{(t) denote the expected number of jobs completed by machine I
n (0,¢], given that the system was in state 1 at time ¢t = 0.

Starting with state 1, the next regenerative transition is to state 3 (i.e.,
the product from machine I is good) or, to state 2 (i.e., the product from
machine I is not good but reworkable), or to state 1 itself (i.e., the product
from machine I is neither good nor reworkable), with probabilities py1, pr1
and p,; respectively; i.e.,

M{(t) = f1(t) * [pg1 M3 () + priM3 (&) + i M{O)] + Fa(2) . (1)
Following a similar logic, one can obtain the remaining equations.
M (t) = g1(t) * [M5(1)] + G1 (1) (2)

M) = [fi®)Fa(t) + fo(O) FL(t)] * [pg1(pg2 + ps2) M2 (t)
+ pri(pg2 + ps2) MI(t) + Ps1(pg2 + Psz)M{(t)]
+ pr2 [F1 () f2(1)] * M{(2)

+ pra /0’ [/0“ fa(ua)ga(u — up) ’ Ji(v) dv duy

+ fi(w) /0 * Fa(ur)Galu - ul)dul]
[pg1 M4 (2 —tu) + ps1 MY (t — u) + pri M3 (t — u)] du
+ (g2 + pe2) /0 [ () Fa(w) + o) Fy ()] du

+ pr2 /Ot [/Ou four)Ga(u — u1) ’ f1(v)dvduy

Uy

1100 [ h)Gate = win| dutpe [ p)F(d
®)
M{(t) = ga(t) * [pgr M5 (1) + pri M3 (2) + por M{ (1)) (4)

The above set of integral equations can be arranged in matrix form (refer to
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Jones [25]) as follows:

G(t) - /0 W (u)G(t — u)du = L(t)

where W is a square matrix of order n (n = the number of equations) con-
sisting of the coefficients of M/’s, G and L are column matrices of order n x 1
consisting of M’s and terms independent of M7 ’s respectively.

The above set of integral equations, being of convolution type, can be
solved by the method suggested by Jones [25].

5.2 Expected number of jobs completed by machine II in [0, ]

Let M{(t) denote the expected number of jobs completed by machine II in
[0,t], given that the system was in state 1 at time ¢ = 0.

The set of equations corresponding to this case can be obtained using the
logic similar to the one given in the previous Subsection.

The matrices G and W will remain the same, with terms M/;’s being
replaced by M/!’s, whereas the L matrix will be of the form

L =[Ly, Ly, Ls, L4)"

where
Li=Ls=0,

L3 = (pga + pa2) / A1 () Fa() + fa(uw) Py (w))du +

o | t [ / “elagai — T5) / f1(v)dvdus +

fi(u) /0" fa(u1)Ga(u — ul)dul] du +

t
Prz/ Jo(u)Fy(u)du ,
0
Ly = Go(t) .
5.3 Expected number of visits of the system to blocked state in
[0,¢]

Let MBL(t) denote the expected number of visits of the system to blocked
state in [0,t], given that the system was in state 1 at time ¢ = 0.
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The L; elements of L matrix, corresponding to this case, are

L1=L2:0,

L3:/0 fa(u)Fy(u)du +

Pr2 /Ot [/Ou f2(u1)g2(u — ul)/: fl(v)dvdul] du ,
Ls=0

5.4 Expected number of reworked jobs completed by machine I in
(0,¢]

Let M{¥(t) denote the expected number of jobs completed by machine I in
[0,1], given that the system was in state 1 at time t = 0. The L; elements of
L matrix, corresponding to this case, are:

Li=0, L2=G1_(t), L3=Ls4=0.
5.5 Expected number of reworked jobs completed by machine II in
[0, ]

Let M{2(t) denote the expected number of reworked jobs completed by ma-
chine II in [0,¢], given that the system was in state 1 at time ¢t = 0. The L;
elements of L matrix, corresponding to this case, are

Li=Lsy=0,
1 u u
L3 =Pr2/0 [/0 fZ(ul)g2(U—u1)/ fi(v)dvdu; +

fr(u) /0“ Jo(u1)Ga(u — Ul)dul] dul;,
Li = Galt) .

5.6 Expected number of visits of the system to rework state in [0, t]

Let Mf*S(t) denote the expected number of visits of the system to rework
state in [0,1], given that the system was in state 1 at time t = 0. The L;
elements of L matrix, corresponding to this case, are

Ly =pri (1), Ly=0,
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t
L Zprz/ [fz(u)F1(U)]du +
0
!
pr(pyz + ) [ i (0)Fa(u) + falu) o) +
t u u°
prlpr2/0 [/0 fa(u1)ga(u — ul)/u1 fi(v)dvduy +

71 [ )G - uodul] du,

L4 = Pr1 [Gz(t)] 5

6. Numerical illustrations

Programs have been devised to obtain the numerical values. The numerical
values for the expected number of jobs completed by machine I; machine
II, reworked jobs completed by machine [ in the interval [0,1] are given in
Tables 2 and 4. The numerical values for the expected number of reworked
Jobs completed by machine II, expected number of visits of the system to
blocked state, rework state in [0,t] are given in Tables 3 and 5 for some
selected values of parameters where

f1(t) = Ay exp(—A1t), f2(t) = Mtexp(—Aqt),

g1(t) = Agt*o =l exp(—t12), g2(t) = Aqexp(—Aat) .

Sensitivity of the numerical values with respect to changes in parameters are
obvious from the Tables.

7. Conclusion

In this paper, the concept of rework is incorporated in the probabilistic anal-
ysis of two-stage transfer-line production systems with an initial storage of
unlimited capacity. A stochastic model of a two-stage production system
subject to an initial buffer of unlimited capacity, inter-stage and end-stage
Inspections and rework is developed by modelling the production system as a
queueing system. Analytical expressions for some of the measures of system
performance such as expected number of jobs completed by machines 1/11,
expected number of reworked jobs completed by machines I, II and expected
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number of visits of the system to some states of interest in a given interval
of time have been obtained. A numerical approximation method is used to
solve the system of integral equations. Such a transient state analysis pro-
vides an insight to the various characteristics of functioning of the system
and is useful when it is desired to monitor the system over a finite horizon of

time.
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Figure 1. Schematic diagram of the production system

—e— indicates that the transition is regenerative

Figure 2. One-siep transilion diagram
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Table 2: Effect of processing rale of M/c I on the expected oulput
Ao=2,A3=2 =1

M|t Jobs Jobs Reworked jobs
by M/c I | by M/c 11 by M/c I
0.5 | 0.40542 0.03212 0.00345
1.0 | 0.70618 0.15423 0.02054
1 | 1.5 ] 0.99099 0.36556 0.04848
2.0 | 1.27554 0.63885 0.07965
2.5 | 1.55947 0.95048 0.11085
0.5 | 0.66295 0.07175 0.00621
1.0 | 1.04283 0.30715 0.03415
2 | 1.5 ] 1.38993 0.64977 0.07562
2.0 1.72968 1.03976 0.11819
2.5 | 2.06346 1.44813 0.15855
0.5 | 0.82858 0.10836 0.00844
1.0 | 1.22511 0.41930 0.04339
3 | 1.5 1.60278 0.82466 0.09131
2.0 | 1.97717 1.25941 0.13750
2.5 | 2.34574 1.70134 0.17992

Table 3: Effect of processing rate of M/c I on the expected output
A=223=2,4=1

A1 | t | Reworked jobs | Blocked | Rework
by M/c II state state
0.5 0.02059 0.02566 | 0.05643
1.0 0.06351 0.11048 | 0.11443
11156 0.11840 0.24871 | 0.17480
2.0 0.18249 0.42093 | 0.23885
2.5 0.25354 0.61200 | 0.30603
0.5 0.04160 0.05526 | 0.09879
1.0 0.11321 0.23429 | 0.18263
2 |15 0.19350 0.49965 | 0.26059
2.0 0.28109 0.80295 | 0.33797
2.5 0.37406 1.11987 | 0.41574
0.5 0.05745 0.08256 | 0.12767
1.0 0.13729 0.33317 | 0.21521
3 |15 0.21917 0.67152 | 0.29105
2.0 0.30694 1.03534 | 0.36547
2.5 0.39937 1.40320 | 0.44007
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Table 4: Effect of processing rate of M/c II on the expecied output
/\1 = 1,A3: 2,)\4 =1

Ay | 8 Jobs Jobs Reworked jobs
by M/c1 | by M/c II by M/c 1
0.5 | 0.38091 0.03110 0.00347
1.0 | 0.65387 0.17502 0.021086
3 | 1.5 ] 0.91949 0.41770 0.05100
2.0 | 1.18480 0.72149 0.08583
2.5 | 1.44860 1.06176 0.12160
0.5 ] 0.36317 0.03759 0.00349
1.0 | 0.61912 0.20530 0.02153
4 | 1.5 | 0.87006 0.47132 0.05296
2.0 | 1.11986 0.79540 0.09011
2.5 | 1.36807 1.15423 0.12850
0.5 | 0.34700 0.04471 0.00350
1.0 | 0.58800 0.22953 0.02193
5 | 1.5 ] 0.82501 0.50923 0.05442
2.0 | 1.06095 0:84463 0.09308
2.5 | 1.29555 1.21380 0.13304

Table 5: Effect of processing rate of M/c II on the expected output
Al = 1,)\3: 2,A4:1

A2 | t | Reworked jobs | Blocked | Rework
by M/c I state state
0.5 0.01058 0.02103 | 0.04194
1.0 0.03744 0.10823 | 0.07433
3 |15 0.07745 0.24418 | 0.10954
2.0 0.12801 0.40405 | 0.14959
2.5 0.18614 0.57514 | 0.19371
0.5 0.00836 0.02339 | 0.03489
1.0 0.03269 0.11586 | 0.05668
4 |15 0.07114 0.24673 | 0.08272
2.0 0.12041 0.39315 | 0.11452
2.5 0.17708 0.54642 | 0.15094
0.5 0.00764 0.02633 | 0.02944
1.0 0.03171 0.11976 | 0.04459
5 | 1.5 0.07032 0.24170 | 0.06549
2.0 0.11963 0.37409 | 0.09282
2.5 0.17606 0.51125 | 0.12508
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